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Abstract

Stochastic Gradient Descent (SGD) has played

a central role in machine learning. However, it

requires a carefully hand-picked stepsize for fast

convergence, which is notoriously tedious and

time-consuming to tune. Over the last several

years, a plethora of adaptive gradient-based algo-

rithms have emerged to ameliorate this problem.

In this paper, we propose new surrogate losses to

cast the problem of learning the optimal stepsizes

for the stochastic optimization of a non-convex

smooth objective function onto an online convex

optimization problem. This allows the use of no-

regret online algorithms to compute optimal step-

sizes on the fly. In turn, this results in a SGD al-

gorithm with self-tuned stepsizes that guarantees

convergence rates that are automatically adaptive

to the level of noise.

1. Introduction

In recent years, Stochastic Gradient Descent (SGD) has

become the tool of choice for fast optimization of convex

and non-convex objective functions. Its simplicity of imple-

mentation allows for use in virtually any machine learning

problem. In its basic version, it iteratively updates the so-

lution to an optimization problem, moving in the negative

direction of the gradient of the objective function at the

current solution:

xt+1 = xt − ηtg(xt, ξt), (1)

where g(xt, ξt) is a stochastic gradient of the objective func-

tion f at the current point xt depending on the stochastic

variable ξt. A critical component of the algorithm is the
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stepsize ηt > 0. In order to achieve a fast convergence,

the stepsizes must be carefully selected, taking into account

the objective function and characteristics of the noise. This

task becomes particularly daunting because the noise might

change over time due to a variety of factors such as, e.g., ap-

proaching the local minimum of the function, changing size

of the minibatch, gradients calculated through a simulation.

For the above reasons, a number of variants of SGD have

been proposed trying to “adapt” the stepsizes in more or

less theoretically principled ways. Indeed, the idea of

adapting stepsizes is an old one. A few famous exam-

ples are the Polyak’s rule (Polyak, 1987), Stochastic Meta-

Descent (Schraudolph, 1999), AdaGrad (Duchi et al., 2011).

However, most of previous approaches to adapting the step-

sizes are designed for convex functions or without a guaran-

teed strategy of converging to some optimal stepsize. In fact,

often the definition itself of “optimal” stepsize is missing.

In this paper, we take a different and novel route. We study

theoretically the setting of stochastic smooth non-convex

optimization and we design convex surrogate loss functions

that upper bound the expected decrement of the objective

function after an SGD update. The first advantage of our

approach is that the optimal stepsize can be now defined

as the one minimizing the surrogate losses. Moreover, us-

ing a no-regret online learning algorithm (Cesa-Bianchi &

Lugosi, 2006), we can adapt the stepsizes and guarantee

that they will be close to the one of the a-posteriori optimal

stepsize. Moreover, basing our approach on online learning

methods, we gain the implicit robustness of these methods

to adversarial conditions.

The rest of the paper is organized as follows. We begin by

discussing related work (Section 2), and then introduce nec-

essary definitions and assumptions (Section 3). Next, we in-

troduce the surrogate loss functions (Section 4) and use them

to design an algorithm that adapts global and coordinate-

wise stepsizes (Sections 5 and 6). We also empirically

validate our theoretical findings on a classification task (Sec-

tion 7 and Appendix) showing that, differently from other

adaptive methods, our method does not require fiddling with

stepsizes to guarantee convergence in the stochastic setting.

Finally, we draw some conclusions and describe the future

work in Section 8.
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2. Related Work

Here we discuss the theoretical related work on adaptive

stochastic optimization algorithms. First, the convergence of

a random iterate of SGD for non-convex smooth functions

has been proved by Ghadimi & Lan (2013). They also

calculate how the optimal stepsize depends on the variance

of the noise in the gradients and the smoothness of the

objective function.

The optimal convergence rate was also obtained by Ward

et al. (2018) using AdaGrad global stepsizes, without the

need to tune parameters. Li & Orabona (2019) improves

over their results by removing the assumption of bounded

gradients. However, both analyses focus on the adaptivity

of non-per-coordinate updates, and are somewhat compli-

cated in order to deal with unbounded gradients or non-

independence of the current stepsize from the current step

gradient. In comparison, our technique is relatively sim-

ple, allowing us to easily show a nontrivial guarantee for

per-coordinate updates. In addition, their results cannot

recover linear rates of convergence assuming, for example,

the Polyak-Łojasiewicz condition (Karimi et al., 2016).

The idea of tuning stepsizes with online learning has been ex-

plored in the online convex optimization literature (Koolen

et al., 2014; van Erven & Koolen, 2016). There, the pos-

sible stepsizes are discretized and an expert algorithm is

used to select the stepsize to use online. Instead, in our

work the use of convex surrogate loss functions allows us to

directly learn the optimal stepsize, without needing to dis-

cretize the range of stepsizes. This becomes very important

when we consider the possibility of learning a stepsize for

each coordinate (Section 6), as we avoid a computational

overhead exponential in the dimension of the space d that a

discretization would incur.

3. Definitions and Assumptions

We use bold lower-case letters to denote vectors, and bold

upper-case letters for matrices, e.g., u ∈ R
d,A ∈ R

m×n.

The ith coordinate of a vector u is ui. Throughout this paper,

we study the Euclidean space R
d with the inner product

〈·, ·〉. Unless explicitly noted, all norms are the Euclidean

norm. The dual norm ‖ · ‖∗ is the norm defined by ‖v‖∗ =
sup

u
{〈u,v〉 : ‖u‖ ≤ 1}. E[u] means the expectation w.r.t.

the underlying probability distribution of a random variable

u. The gradient of f at x is denoted by ∇f(x).
Now, we describe our first-order stochastic black-box oracle.

In our setting, we will query the stochastic oracle two times

on each round t = 1, . . . , T , obtaining the noisy gradients

g(xt, ξt) and g(xt, ξ
′
t). Note that, when convenient, we

will refer to g(xt, ξt) and g(xt, ξ
′
t) as gt and g′

t respec-

tively. We assume everywhere that our objective function is

bounded from below and denote the infimum by f⋆, hence

f⋆ > −∞. Also, we use Et[u] to denote the conditional

expectation of u with respect to ξ1, . . . , ξt−1, ξ
′
1, . . . , ξ

′
t−1.

Further, we will make use of the following assumptions:

H1: The noisy gradients at time t are unbiased and inde-

pendent given the past, that is

Et [g(xt, ξt)] = Et [g(xt, ξ
′
t)] = ∇f(xt),

Et [〈g(xt, ξt), g(xt, ξ
′
t)〉] = ‖∇f(xt)‖2 .

H2: The noisy gradients gt have finite variance with re-

spect to the L2 norm:

Et

[

‖g(xt, ξt)−∇f(xt)‖2
]

= σ2
t .

H3: The noisy gradients have bounded norm:

‖g(xt, ξt)‖ ≤ L, ‖g(xt, ξ
′
t)‖ ≤ L.

H4: The function f : Rd → R is M -smooth, that is f
is differentiable and ∀x1,x2 ∈ R

d we have ‖∇f(x1) −
∇f(x2)‖ ≤ M‖x1 − x2‖. Note that (H4), for all x,y ∈
R

d, implies (Nesterov, 2003, Lemma 1.2.3)

|f(x2)− f(x1)− 〈∇f(x1),x2 − x1〉| ≤
M

2
‖x2−x1‖2.

We will also consider the Polyak-Łojasiewicz (PL) condi-

tion (Karimi et al., 2016), a much weaker version of strong

convexity. The PL condition does not require convexity, but

is still sufficient for showing a global linear convergence

rate for gradient descent.

H5: A differentiable function f satisfies the PL condition

if for some µ > 0

‖∇f(x)‖2 ≥ 2µ(f(x)− f⋆), ∀x .

4. Surrogate Losses

Consider using SGD with non-convex M -smooth losses, us-

ing a fixed stepsize 0 < η ≤ 1
M

and starting from an initial

point x1. Assuming all the variances are bounded by σ2,

it is well-known that we obtain the following convergence

rate (Ghadimi & Lan, 2013)

E[‖∇f(xk)‖2] ≤ O
(

(f(x1)− f⋆)/(ηT ) + ησ2
)

,

where k is a uniform random variable between 1 and T .

From the above, it is immediate to see that we need a step-

size of the form O(min(

√
f(x1)−f⋆

σ
√
T

, 1
M
)) to have the best

worst case convergence of O( 1
T

+ σ√
T
). In words, this

means that we get a faster rate, O( 1
T
), when there is no

noise, and a slower rate, O( σ√
T
), in the presence of noise.

However, we usually do not know the variance of the noise

σ, which makes the above optimal tuning of the stepsize

difficult to achieve in practice. Even worse, the variance can
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change over time. For example, it may decrease over time if

f(x) = E[fj(x)] and each fj has zero gradient at the local

optimum we are converging to. Moreover, even assuming

the knowledge of the variance of the noise, the stepsizes

proposed in Ghadimi & Lan (2013) assume the knowledge

of the unknown quantity f(x1)− f⋆.

One solution would be to obtain an explicit estimate of the

variances of the noise, for example by applying some con-

centration inequality to the sample variance, and use it to

set the stepsizes. This approach is suboptimal because it

does not directly optimize the convergence rates, relying

instead on a loose worst-case analysis. Instead, we pro-

pose to directly estimate the stepsizes that achieve the best

convergence rate using an online learning algorithm. Our ap-

proach is simple and efficient: we introduce new surrogate

(strongly)-convex losses that make the problem of learn-

ing the stepsizes a simple one-dimensional online convex

optimization problem.

Our strategy uses the smoothness of the objective function to

transform the problem of optimizing a non-convex objective

function to the problem of optimizing a series of convex loss

functions, which we solve by an online learning algorithm.

Specifically, at each time t define the surrogate loss ℓt :
R→ R as

ℓt(η) =
Mη2

2
‖g(xt, ξt)‖2 − η〈g(xt, ξt), g(xt, ξ

′
t)〉, (2)

where g(xt, ξt) and g(xt, ξ
′
t) are the noisy stochastic gra-

dients received from the black-box oracle at time t. It is

clear that ℓt is a convex function. Moreover, the following

key result shows that these surrogate losses upper bound the

expected decrease of the function value f .

Theorem 1. Assume (H4) holds and ηt is independent from

ξj and ξ′j for j ≥ t. Then, for the SGD update in (1), we

have

E [f(xt+1)− f(xt)] ≤ E [ℓt(ηt)] .

Proof. The M -smoothness of f gives us:

E [f(xt+1)− f(xt)]

≤ E

[

〈∇f(xt),xt+1 − xt〉+
M

2
‖xt+1 − xt‖2

]

= E

[

〈∇f(xt),−ηtg(xt, ξt)〉+
M

2
η2t ‖g(xt, ξt)‖2

]

= E

[

〈∇f(xt),Et [−ηtg(xt, ξt)]〉+
M

2
η2t ‖g(xt, ξt)‖2

]

.

Now observe that ∇f(xt) = Et [g(xt, ξ
′
t)], so that

E [〈Et [g(xt, ξ
′
t)] ,Et [−ηtg(xt, ξt)]〉]

= E [Et [〈g(xt, ξ
′
t),−ηtg(xt, ξt)〉]]

= E [〈g(xt, ξ
′
t),−ηtg(xt, ξt)〉] .

Putting all together, we have the stated inequality.

Algorithm 1 Stochastic Gradient Descent with Online

Learning (SGDOL)

1: Input: x1 ∈ X , M , an online learning algorithm A
2: for t = 1, 2, . . . , T do

3: Compute ηt by runningA on ℓi, i = 1, . . . , t−1, as

defined in (2)

4: Receive two independent unbiased estimates of

∇f(xt): gt, g
′
t

5: Update xt+1 = xt − ηtgt

6: end for

7: Output: uniformly randomly choose a xk from

x1, . . . ,xT .

Note that the assumption of the independence of ηt from

the stochasticity ξj and ξ′j of the current step is essential

according to Li & Orabona (2019).

The theorem tells us that if we want to decrease the function

f , we might instead try to minimize the convex surrogate

losses ℓt. In the following, we build up on this intuition to

design an online learning procedure that adapts the stepsizes

of SGD to achieve the optimal convergence rate.

5. SGDOL: Adaptive Stepsizes with FTRL

The surrogate losses allow us to design an online convex

optimization procedure to learn the optimal stepsizes. We

call this procedure Stochastic Gradient Descent with Online

Learning (SGDOL) and the pseudocode is in Algorithm 1.

Remind that g(xt, ξt) and g(xt, ξ
′
t) are referred to as gt

and g′
t respectively for convenience. In each round, the

stepsizes are chosen by an online learning algorithm A fed

with the surrogate losses ℓt. The online learning algorithm

aims at minimizing the regret: the difference between the

cumulative sum of the losses incurred by the algorithm in

each round, and the cumulative losses w.r.t any fixed point η
(especially the one giving the smallest losses in hindsight).

In formulas, for a 1-dimensional online convex optimization

problem, the regret is defined as

RegretT (η) =
T
∑

t=1

(ℓt(ηt)− ℓt(η)) .

A small regret with respect to the optimal choice of η means

that the losses of the algorithm are not too big compared

to the best achievable losses from using a fixed point. In

turn, this implies that the stepsizes chosen by the online

algorithm will not be too far from the optimal (unknown)

stepsize.

Employing SGDOL, we can prove the following Theorem.

Theorem 2. Assume (H1, H2, H4) to hold. Then, for any
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η > 0, SGDOL in Algorithm 1 satisfies

E

[

(

η − M

2
η2
) T
∑

t=1

‖∇f(xt)‖2
]

≤ f(x1)− f⋆ + E [RegretT (η)] +
Mη2

2

T
∑

t=1

E[σ2
t ] .

Proof. Summing the inequality in Theorem 1 from 1 to T :

f⋆ − f(x1) ≤ E[f(xT+1)]− f(x1)

=

T
∑

t=1

E [f(xt+1)− f(xt)]

≤
T
∑

t=1

E [ℓt(ηt)]

=
T
∑

t=1

E [ℓt(ηt)− ℓt(η)] +
T
∑

t=1

E [ℓt(η)]

≤ E [RegretT (η)] +

T
∑

t=1

E [ℓt(η)] .

Using the fact that

Et[ℓt(η)] =

(

−η +
M

2
η2
)

‖∇f(xt)‖2 +
M

2
η2σ2

t ,

we have the stated bound.

The only remaining ingredient for SGDOL is to decide an

online learning procedure. Given that the surrogate losses

are strongly convex, we can use a Follow The Regularized

Leader (FTRL) algorithm (Shalev-Shwartz, 2007; Aber-

nethy et al., 2008; 2012; McMahan, 2017). Note that this is

not the only possibility, e.g. we could even use an optimistic

FTRL algorithm that achieves even smaller regret (Mohri

& Yang, 2016). However, FTRL is enough to show the

potential of our surrogate losses. In an online learning game

in which we receive the convex losses ℓt, FTRL constructs

the predictions vt by solving the optimization problem

vt+1 = argmin
v∈Rd

r(v) +

t
∑

s=1

ℓs(v),

where r : Rd → R is a regularization function. We can

upper bound the regret of FTRL with the following theorem.

Theorem 3. (McMahan, 2017) Suppose r is chosen such

that ht = r+
∑t

i=1 ℓi is 1-strongly-convex w.r.t. some norm

‖ · ‖(t). Then, choosing any gt ∈ ∂ℓt(xt) on each round,

for any x⋆ ∈ R
d and for any T > 0,

RegretT (x
⋆) ≤ r(x⋆) +

1

2

T
∑

t=1

‖gt‖2(t),⋆,

where ‖ · ‖(t),⋆ is the dual norm of ‖ · ‖(t).

Algorithm 2 Follow the Regularized Leader (FTRL)

1: Parameters: r(v) ≥ 0
2: v1 ← argmin

v∈Rd r(v)
3: for t = 1, 2, . . . do

4: Observe convex loss function ℓt : R
d → R ∪ {∞}

5: Incur loss ℓt(vt)
6: Update vt+1 ← argmin

v∈Rd r(v) +
∑t

s=1 ℓs(v)
7: end for

We can now put all together and obtain a convergence rate

guarantee for SGDOL.

Theorem 4. By choosing r(η) = Mα
2

(

η − 1
M

)2
+

I
(

η ∈
[

0, 2
M

])

with α > 0, assuming (H1 - H4), and us-

ing FTRL, Algorithm 2, in Algorithm 1, for an uniformly

randomly picked xk from x1, . . . ,xT , we have:

E
[

‖∇f(xk)‖2
]

≤ 2M

T

(

f(x1)− f⋆ +
5L2

M
ln

(

1 +
L2T

α

))

+
1

T

√

√

√

√2M

T
∑

t=1

E[σ2
t ]
(

f(x1)− f⋆ +
α

2M

)

+
1

T

√

√

√

√10L2

T
∑

t=1

E[σ2
t ] ln

(

1 +
L2T

α

)

.

Before proving this theorem, we make some observations.

The FTRL update gives us a very simple strategy to calculate

the stepsizes ηt. In particular, the FTRL update has a closed

form:

ηt = max







0,min







α+
∑t−1

j=1〈gj , g
′
j〉

M
(

α+
∑t−1

j=1 ‖gj‖2
) ,

2

M













.

Note that this update can be efficiently computed by keeping

track of the quantities
∑t−1

j=1〈gj , g
′
j〉 and

∑t−1
j=1 ‖gj‖2.

While the computational complexity of calculating ηt by

FTRL is negligible, SGDOL requires two unbiased gradi-

ents per step. This increases the computational complexity

with respect to a plain SGD procedure by a factor of two.

The value of α affects how fast ηt deviates from its initial

value 1
M

. Although Theorem 4 shows that a too small

α would blow up the log factor, it also indicates setting

α to be comparable with M(f(x1) − f(x∗)) or smaller

would suffice for not inducing a major influence on the

convergence rate. In fact, preliminary experiments have

shown that α has no notable influence on performance so

long as it is comparable to M or smaller.

We can now prove the convergence rate in Theorem 4. For

the proof, we need the following technical lemma.



Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization

Lemma 5. Let h : [0,+∞)→ [0,+∞) be a nonincreasing

function, and ai ≥ 0 for i = 0, · · · , T . Then

T
∑

t=1

ath

(

a0 +

t
∑

i=1

ai

)

≤
∫

∑
T
t=0

at

a0

h(x)dx .

Proof. Denote by st =
∑t

i=0 ai.

ath(st) =

∫ st

st−1

h(st)dx ≤
∫ st

st−1

h(x)dx .

Summing over t = 1, · · · , T , we have the stated bound.

Proof of Theorem 4. As ℓ′′t (η) = M‖gt‖2, ht =
r +

∑t

i=1 ℓi is 1-strongly-convex w.r.t. the norm
√

M
(

α+
∑t

s=1 ‖gs‖2
)

‖ · ‖.

Applying Theorem 3, we get that, for any η ∈
[

0, 2
M

]

,

RegretT (η)

≤ Mα

2

(

η − 1

M

)2

+
1

2M

T
∑

t=1

(ℓ′t(ηt))
2

α+
∑t

s=1 ‖gs‖2
.

Now observe that

(ℓ′t(ηt))
2
=
(

−〈gt, g
′
t〉+Mηt‖gt‖2

)2

≤ 2〈gt, g
′
t〉2 + 2M2η2t ‖gt‖4

≤ 2‖gt‖2‖g′
t‖2 + 8‖gt‖4 ≤ 10L2‖gt‖2,

where in the third line of which we used the Cauchy-

Schwarz inequality and ηt ≤ 2
M

. Hence, we get

1

2M

T
∑

t=1

(ℓ′t(ηt))
2

α+
∑t

s=1 ‖gs‖2

≤5L2

M

T
∑

t=1

‖gt‖2
α+

∑t

s=1 ‖gs‖2

≤5L2

M
ln

(

α+
∑T

t=1 ‖gt‖2
α

)

≤5L2

M
ln

(

1 +
L2T

α

)

,

where in the second inequality we used Lemma 5.

Put the last inequality above back into Theorem 2 yields

E

[

(

η − M

2
η2
) T
∑

t=1

‖∇f(xt)‖2
]

≤ f(x1)− f⋆ +
Mα

2

(

η − 1

M

)2

+
5L2

M
ln

(

1 +
L2T

α

)

+
Mη2

2

T
∑

t=1

E[σ2
t ] .

Denote A ,
∑T

t=1 E
[

‖∇f(xt)‖2
]

, we can transform the

above into a quadratic inequality of η:

0 ≤ M

2

(

A+ α+

T
∑

t=1

E[σ2
t ]

)

η2 − (A+ α)η

+ f(x1)− f⋆ +
5L2

M
ln

(

1 +
L2T

α

)

+
α

2M
.

Choosing η as the minimizer of the right hand side: η∗ =
α+A

M(α+A)+M
∑

T
t=1

E[σ2

t ]
(which satisfies η∗ ≤ 2

M
) gives us

(α+A)2

2M
(

α+A+
∑T

t=1 E[σ
2
t ]
)

≤ f(x1)− f⋆ +
α

2M
+

5L2

M
ln

(

1 +
L2T

α

)

.

Solving this quadratic inequality of A yields

A ≤ 2M

(

f(x1)− f⋆ +
5L2

M
ln

(

1 +
L2T

α

))

+

√

√

√

√2M

T
∑

t=1

E[σ2
t ]
(

f(x1)− f⋆ +
α

2M

)

+

√

√

√

√10L2

T
∑

t=1

E[σ2
t ] ln

(

1 +
L2T

α

)

.

By taking an xk from x1, . . . ,xT randomly, we get:

E
[

‖∇f(xk)‖2
]

= E
[

E
[

‖∇f(xk)‖2
∣

∣k
]]

=
1

T

T
∑

t=1

E
[

‖∇f(xt)‖2
]

,

that completes the proof.

Polyak-Łojasiewicz Condition. When we assume in ad-

dition that the objective function satisfies the Polyak-

Łojasiewicz Condition (Karimi et al., 2016) (H5), we can

get the linear rate in the noiseless case.

Theorem 6. Choosing r(η) = Mα
2

(

η − 1
M

)2
+

I
(

η ∈
[

0, 2
M

])

with α > 0, assume (H1 - H5), and that

g(xt, ξt) = g(xt, ξ
′
t) = ∇f(xt) for all t (i.e. there is no

noise). Then feeding Algorithm 2 into Algorithm 1, yields:

E [f(xT+1)− f⋆] ≤
(

1− µ

M

)T

[f(x1)− f⋆] .

Proof. From the update rule of ηt, we have that when there
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is no noise, ηt =
1
M

all the time, thus:

E[f(xT+1)− f⋆]

≤ E [f(xT )− f⋆ + 〈∇f(xT ),xT+1 − xT 〉]

+ E

[

M

2
‖xT+1 − xT ‖2

]

= E

[

f(xT )− f⋆ +

(

−ηT +
Mη2T
2

)

‖∇f(xT )‖2
]

= E

[

f(xT )− f⋆ − 1

2M
‖∇f(xT )‖2

]

≤ E

[(

1− µ

M

)

(f(xT )− f⋆)
]

≤ · · · ≤

≤
(

1− µ

M

)T

[f(x1)− f⋆] .

6. Adapting Per-coordinate Stepsizes

In the previous Section, we have shown how to use the sur-

rogate loss functions to adapt a stepsize. Another common

strategy in practice is to use a per-coordinate stepsize. This

kind of scheme is easily incorporated into our framework

and we show that it can provide improved adaptivity to

per-coordinate variances.

Specifically, we consider ηt now to be a vector in R
d,

ηt = (ηt,1, . . . , ηt,d) and use the update xt+1 = xt −
ηtgt where ηtgt now indicates coordinate-wise product

(ηt,1gt,1, . . . , ηt,dgt,d). Then we define

ℓt(η) =
M

2
‖ηg(xt, ξt)‖2 − 〈ηg(xt, ξt), g(xt, ξ

′
t)〉

=
d
∑

i=1

[

M

2
η2i g(xt, ξt)

2
i − ηig(xt, ξt)ig(xt, ξ

′
t)i

]

.

To take advantage of this scenario, we need more detail

about the variance, which we encapsulate in the following

assumption:

H2’: The noisy gradients gt have finite variance in each

coordinate:

Et

[

(g(xt, ξt)i −∇f(xt)i)
2
]

= σ2
t,i .

Note that this assumption is not actually stronger than (H2)

because we can define σ2
t =

∑d

i=1 σ
2
t,i. This merely pro-

vides finer-grained variable names.

Also, we make the assumption:

H3’: The noisy gradients have bounded coordinate values:

|g(xt, ξt)i| ≤ Li, |g(xt, ξ
′
t)i| ≤ Li .

Now the exact same argument as for Theorem 2 yields:

Theorem 7. Assume (H4) and the two noisy gradients in

each round t to satisfy (H1) and (H2’). Then, for any η ∈

R
d with ηi > 0 for all i, the per-coordinate variant of

Algorithm 1 obtains

E

[

T
∑

t=1

d
∑

i=1

(

ηi −
M

2
η2i

)

∇f(xt)
2
i

]

≤ f(x1)− f⋆ + E [RegretT (η)] +
M

2

d
∑

i=1

T
∑

t=1

η2i E[σ
2
t,i] .

With this Theorem in hand, once again all that remains is to

choose the online learning algorithm. To this end, observe

that we can write ℓt(η) =
∑d

i=1 ℓt,i(ηi) where

ℓt,i(ηi) =
M

2
η2i g(xt, ξt)

2
i − ηig(xt, ξt)ig(xt, ξ

′
t)i .

Thus, we can take our online learning algorithm to be a

per-coordinate instantiation of Algorithm 2, and the total

regret is simply the sum of the per-coordinate regrets. Each

per-coordinate regret can be analyzed in exactly the same

way as Algorithm 2, leading to

RegretT (η) =

d
∑

i=1

RegretT,i(ηi),

RegretT,i(ηi) ≤
Mα

2

(

ηi −
1

M

)2

+
5L2

i

M
ln

(

1 +
L2
iT

α

)

.

From these inequalities we can make a per-coordinate bound

on the gradient magnitudes. In words, the coordinates which

have smaller variances σ2
t,i achieve smaller gradient values

faster than coordinates with larger variances. Further, we

preserve adaptivity to the full variance
∑T

t=1 E[σ
2
t ] in the

rate of decrease of ‖∇f(x)‖2.

Theorem 8. Assume (H1, H2’, H3’, H4). Suppose we run

a per-coordinate variant of Algorithm 1, with regularizer

r(ηi) = Mα
2

(

ηi − 1
M

)2
+ I

(

ηi ∈
[

0, 2
M

])

in each coor-

dinate with α > 0. Then, for each i ∈ {1, . . . , d}, we

have

E

[

T
∑

t=1

∇f(xt)
2
i

]

≤ 2M

(

f(x1)− f⋆ +

d
∑

i=1

5L2
i

M
ln

(

1 +
L2
iT

α

)

)

+

√

√

√

√2M
T
∑

t=1

E[σ2
t,i]

(

f(x1)− f⋆ +
dα

2M

)

+

√

√

√

√10

T
∑

t=1

E[σ2
t,i]

d
∑

i=1

L2
i ln

(

1 +
L2
iT

α

)

+ (d− 1)α .



Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization

Further, with σt =
∑T

t=1 σ
2
t,i it also holds

E

[

T
∑

t=1

‖∇f(xt)‖2
]

≤ 2M

(

f(x1)− f⋆ +

d
∑

i=1

5L2
i

M
ln

(

1 +
L2
iT

α

)

)

+

√

√

√

√2M

T
∑

t=1

E[σ2
t ]

(

f(x1)− f⋆ +
dα

2M

)

+

√

√

√

√10
T
∑

t=1

E[σ2
t ]

d
∑

i=1

L2
i ln

(

1 +
L2
iT

α

)

.

Proof. The proof is nearly identical to that of Theorem 4.

We have

E

[

d
∑

i=1

(

ηi −
M

2
η2i

) T
∑

t=1

∇f(xt)
2
i

]

≤ f(x1)− f⋆ +
Mα

2

d
∑

i=1

(

ηi −
1

M

)2

+
d
∑

i=1

5L2
i

M
ln

(

1 +
L2
iT

α

)

+
d
∑

i=1

Mη2i
2

T
∑

t=1

E[σ2
t,i] .

Let Ai , E[
∑T

t=1∇f(xt)
2
i ] and choosing ηi by the same

strategy in Theorem 4 as α+Ai

M(α+Ai+
∑

T
t=1

E[σ2

t,i
])

to obtain

d
∑

i=1

(α+Ai)
2

2M
(

α+Ai +
∑T

t=1 E[σ
2
t,i]
)

≤ f(x1)− f⋆ +
dα

2M
+

d
∑

i=1

5L2
i

M
ln

(

1 +
L2
iT

α

)

.

Now, the first statement of the Theorem follows by observ-

ing that each term on the LHS is non-negative so that the

sum can be lower-bounded by any individual term. For the

second statement, define

Qi =
(α+Ai)

2

2M
(

α+Ai +
∑T

t=1 E[σ
2
t,i]
)

Q = f(x1)− f⋆ +
dα

2M
+

d
∑

i=1

5L2
i

M
ln

(

1 +
L2
iT

α

)

,

so that
∑d

i=1 Qi ≤ Q. By the quadratic formula and defini-

tion of Qi, we have

Ai ≤ 2MQi +

√

√

√

√2MQi

T
∑

t=1

E[σ2
t,i]− α .

Thus,

d
∑

i=1

Ai ≤ 2MQ− dα+

d
∑

i=1

√

√

√

√2MQi

T
∑

t=1

E[σ2
t,i]

≤ 2MQ− dα+
√
2M

√

√

√

√

d
∑

i=1

Qi

√

√

√

√

d
∑

i=1

T
∑

t=1

E[σ2
t,i]

= 2MQ− dα+

√

√

√

√2MQ

T
∑

t=1

E[σ2
t ] .

From which the second statement follows.

7. Experiments

SGD is widely known to enjoy good empirical properties,

but our learning rate schedule is very unique, so to validate

our theoretical findings, we experiment on fitting a classifi-

cation model on the adult (a9a) dataset from the LibSVM

website (Chang & Lin, 2001). The objective function is

f(x) :=
1

m

m
∑

i=1

φ(a⊤
i x− yi),

where φ(θ) = θ2

1+θ2 , and (ai, yi) are the couples feature

vector/label. The loss function φ is non-convex, 1-Lipschitz

and 2-smooth w.r.t. the ℓ2 norm.

We consider the minimization problem with respect to all

training samples. Also, as the dataset is imbalanced towards

the group with annual income less than 50K, we subsample

that group to balance the dataset, which results in 15682

samples with 123 features each. In addition, we append a

constant element to each sample feature vector to introduce

a constant bias. x1 is initialized to be all zeros. For each

setting, we repeat the experiment independently but with the

same initialization for 5 times, and plot the average of the

relevant quantities. In this setting, the noise on the gradient

is generated by the use of minibatches.

We compare SGDOL with AdaGrad (Duchi et al., 2010),

SGD, and Adam (Kingma & Ba, 2015) on three different

minibatch sizes, namely different noise scales: using all

samples, 50 i.i.d. samples, or 1 random sample for evaluat-

ing the gradient at a point. (Note that we adopt the scheme

of using a single learning rate for all dimensions in SGDOL

and AdaGrad thus the suffix ‘Global’.) The learning rates of

each algorithm, except for SGDOL Global, are selected as

the ones giving the best convergence rate when the full batch

scheme, namely zero noise, is employed, and are shown in

the legend. We take the reciprocal of SGD’s best learning

rate as the parameter M for SGDOL Global, and we set

α = 10 without any tuning based on our discussion on

the influence of α in Section 5. These parameters are then

employed in other two noisy settings.
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